3.5.10 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {e \sec (c+d x)}} \, dx\) [410]

Optimal. Leaf size=563 \[ \frac {5 i a^{7/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 i a^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}} \]

[Out]

5/2*I*a^(7/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)/d*2^(
1/2)/e^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-5/2*I*a^(7/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*t
an(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)/d*2^(1/2)/e^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*ta
n(d*x+c))^(1/2)-5/4*I*a^(7/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d
*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)/d*2^(1/2)/e^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+5/4*I
*a^(7/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+
c)))*sec(d*x+c)/d*2^(1/2)/e^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-10*I*a^2*(a+I*a*tan(d*x+c)
)^(1/2)/d/(e*sec(d*x+c))^(1/2)+I*a*(a+I*a*tan(d*x+c))^(3/2)/d/(e*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.39, antiderivative size = 563, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3579, 3577, 3580, 3576, 303, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {5 i a^{7/2} \sec (c+d x) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \sec (c+d x) \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 i a^{7/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(5/2)/Sqrt[e*Sec[c + d*x]],x]

[Out]

((5*I)*a^(7/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c +
 d*x])/(Sqrt[2]*d*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - ((5*I)*a^(7/2)*ArcTan[1 + (
Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt[e]*S
qrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (((5*I)/2)*a^(7/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sq
rt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d
*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (((5*I)/2)*a^(7/2)*Log[a + (Sqrt[2]*Sqrt[a]*
Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/
(Sqrt[2]*d*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - ((10*I)*a^2*Sqrt[a + I*a*Tan[c + d
*x]])/(d*Sqrt[e*Sec[c + d*x]]) + (I*a*(a + I*a*Tan[c + d*x])^(3/2))/(d*Sqrt[e*Sec[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3577

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(d
*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] - Dist[b^2*((m + 2*n - 2)/(d^2*m)), Int[(d*Sec[e + f
*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n,
1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILt
Q[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) && IntegerQ[2*m]

Rule 3579

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Dist[a*((m + 2*n - 2)/(m + n - 1)), Int[(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] &&
 GtQ[n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3580

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[d*(Sec
[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])), Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {e \sec (c+d x)}} \, dx &=\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}+\frac {1}{2} (5 a) \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx\\ &=-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}-\frac {\left (5 a^3\right ) \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{2 e^2}\\ &=-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}-\frac {\left (5 a^3 \sec (c+d x)\right ) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)} \, dx}{2 e \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}-\frac {\left (10 i a^4 e \sec (c+d x)\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}+\frac {\left (5 i a^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (5 i a^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}-\frac {\left (5 i a^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 d e \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (5 i a^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 d e \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (5 i a^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (5 i a^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {5 i a^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 i a^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}-\frac {\left (5 i a^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (5 i a^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {5 i a^{7/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 i a^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 i a^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{2 \sqrt {2} d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {10 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}+\frac {i a (a+i a \tan (c+d x))^{3/2}}{d \sqrt {e \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(11357\) vs. \(2(563)=1126\).
time = 6.36, size = 11357, normalized size = 20.17 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Sqrt[e*Sec[c + d*x]],x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [A]
time = 1.14, size = 347, normalized size = 0.62

method result size
default \(-\frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (5 i \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )-5 i \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+5 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )+5 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+16 i \left (\cos ^{2}\left (d x +c \right )\right )-18 i \cos \left (d x +c \right )-16 \sin \left (d x +c \right ) \cos \left (d x +c \right )+2 i-2 \sin \left (d x +c \right )\right ) a^{2}}{2 d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) \sqrt {\frac {e}{\cos \left (d x +c \right )}}}\) \(347\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(5*I*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*arct
anh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-5*I*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)
*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+5*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1
/2)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+5*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))
^(1/2)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+16*I*cos(d*x+c)^2-18*I*cos(d*x+c)-16*si
n(d*x+c)*cos(d*x+c)+2*I-2*sin(d*x+c))/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)/(e/cos(d*x+c))^(1/2)*a^2

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2008 vs. \(2 (403) = 806\).
time = 0.66, size = 2008, normalized size = 3.57 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

8*(10*(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos(1/4*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1, sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
 1) + 10*(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos(1/4
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) + 1) + 10*(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos
(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1, sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 1) + 10*(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*
cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))) + 1) - 10*(-I*sqrt(2)*a^2*cos(2*d*x + 2*c) + sqrt(2)*a^2*sin(2*d*x + 2*c) - I*sqrt(2)*a^2)*arctan2(s
qrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c))), sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + 1) - 10*(I*sqrt(2)*a^2*cos(2*d*x + 2*c) - sqrt(2)*a^2*sin(2*d*x + 2*c) + I*sqrt(2)*a^2)*arctan2(
-sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c))), -sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 1) - 16*(4*a^2*cos(2*d*x + 2*c) + 4*I*a^2*sin(2*d*x + 2*c) + 5*a^2)*cos(1/4*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c))) + 5*(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*
log(2*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))) + 2*(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1)*cos(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 5*
(sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*log(-2*sqrt(2)*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*(sqrt(2)*cos(1/4*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 +
 sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 5*(-I*sqrt(2)*a^2*cos(2*d*x + 2*c
) + sqrt(2)*a^2*sin(2*d*x + 2*c) - I*sqrt(2)*a^2)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2
 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 5*(I*sqrt(2)*a^2*cos(2*
d*x + 2*c) - sqrt(2)*a^2*sin(2*d*x + 2*c) + I*sqrt(2)*a^2)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 5*(-I*sqrt(2)*
a^2*cos(2*d*x + 2*c) + sqrt(2)*a^2*sin(2*d*x + 2*c) - I*sqrt(2)*a^2)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 5*(I
*sqrt(2)*a^2*cos(2*d*x + 2*c) - sqrt(2)*a^2*sin(2*d*x + 2*c) + I*sqrt(2)*a^2)*log(2*cos(1/4*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
2) - 16*(4*I*a^2*cos(2*d*x + 2*c) - 4*a^2*sin(2*d*x + 2*c) + 5*I*a^2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c))))*sqrt(a)*e^(-1/2)/(d*(-64*I*cos(2*d*x + 2*c) + 64*sin(2*d*x + 2*c) - 64*I))

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 463, normalized size = 0.82 \begin {gather*} \frac {{\left (\sqrt {\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} \log \left (-\frac {2 \, {\left (i \, \sqrt {\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} - \frac {5 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{5 \, a^{2}}\right ) - \sqrt {\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} \log \left (-\frac {2 \, {\left (-i \, \sqrt {\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} - \frac {5 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{5 \, a^{2}}\right ) + \sqrt {-\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} \log \left (-\frac {2 \, {\left (i \, \sqrt {-\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} - \frac {5 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{5 \, a^{2}}\right ) - \sqrt {-\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} \log \left (-\frac {2 \, {\left (-i \, \sqrt {-\frac {25 i \, a^{5} e^{\left (-1\right )}}{d^{2}}} d e^{\frac {1}{2}} - \frac {5 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{5 \, a^{2}}\right ) - \frac {4 \, {\left (4 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 5 i \, a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {1}{2}\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(25*I*a^5*e^(-1)/d^2)*d*e^(1/2)*log(-2/5*(I*sqrt(25*I*a^5*e^(-1)/d^2)*d*e^(1/2) - 5*(a^2*e^(2*I*d*x +
 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))/a^2) -
 sqrt(25*I*a^5*e^(-1)/d^2)*d*e^(1/2)*log(-2/5*(-I*sqrt(25*I*a^5*e^(-1)/d^2)*d*e^(1/2) - 5*(a^2*e^(2*I*d*x + 2*
I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))/a^2) + sq
rt(-25*I*a^5*e^(-1)/d^2)*d*e^(1/2)*log(-2/5*(I*sqrt(-25*I*a^5*e^(-1)/d^2)*d*e^(1/2) - 5*(a^2*e^(2*I*d*x + 2*I*
c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))/a^2) - sqrt
(-25*I*a^5*e^(-1)/d^2)*d*e^(1/2)*log(-2/5*(-I*sqrt(-25*I*a^5*e^(-1)/d^2)*d*e^(1/2) - 5*(a^2*e^(2*I*d*x + 2*I*c
) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))/a^2) - 4*(4*
I*a^2*e^(2*I*d*x + 2*I*c) + 5*I*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x
 + 2*I*c) + 1))*e^(-1/2)/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)/(e*sec(d*x+c))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*e^(-1/2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(5/2)/(e/cos(c + d*x))^(1/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(5/2)/(e/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________